国产FPGA SOC 双目视觉处理系统开发实例

2025-02-19

1669

来源:九游老哥J9俱乐部官网电子
1. 系统架构解析
本系统基于九游老哥J9俱乐部官网MYC-YM90X构建,搭载安路DR1 FPGA SOC 创新型异构计算平台,充分发挥其双核Cortex-A35处理器与可编程逻辑(PL)单元的协同优势。通过AXI4-Stream总线构建的高速数据通道(峰值带宽可达12.8GB/s),实现ARM与FPGA间的纳秒级(ns)延迟交互,较传统方案提升了3倍的传输效率,极大地提升了系统整体性能。
国产化技术亮点:
全自主AXI互连架构,支持多主多从拓扑,确保系统灵活性与可扩展性 硬核处理器与PL单元共享DDR3控制器,提高内存带宽利用率(可升级至DDR4) 动态时钟域隔离技术(DCIT),确保跨时钟域的数据交互稳定性,避免时序错误 国产SM4加密引擎硬件加速模块,为数据加密任务提供硬件级别的支持,提升加密处理效率
图一 系统架构框图
如图一所示,系统架构通过“低内聚,高耦合”的设计思想,通过模块化的设计方式,完成了以下工作。
1. 通过I?C对OV5640摄像头进行分辨率,输出格式等配置。
2. 双目图像数据进行三级帧缓存,FIFO——DMA——DDR。
3. 客制化低延迟ISP(开发者根据场景需求加入)
4. VTC驱动HDMI输出显示
2. 系统程序开发
2.1 DR1固件架构设计
GUI设计界面,类Blockdesign设计方式,通过AXI总线,连接DR1的ARM核与定制化外设,包括以太网,RAM模块,PL DMA和VTC。
图二 FPGA底层架构框图
2.2 双目视觉处理流水线
2.2.1 传感器配置层
为实现高效的传感器配置,本系统采用混合式I?C配置引擎,通过PL端硬件I?C控制器实现传感器参数的动态加载。与纯软件方案相比,该硬件加速的配置速度提升了8倍,显著降低了配置延迟。
// 可重配置传感器驱动IP
module ov5640_config (
input wire clk_50M,
output tri scl,
inout tri sda,
input wire [7:0] reg_addr,
input wire [15:0] reg_data,
output reg config_done
);
// 支持动态分辨率切换(1920x1080@30fps ? 1280x720@60fps)
parameter [15:0] RESOLUTION_TABLE[4] = '{...};
该配置引擎支持多分辨率与高帧率动态切换,适应不同应用场景需求。
2.2.2 数据采集管道
系统构建了三级缓存体系,确保数据处理的高效性和实时性:
像素级缓存:采用双时钟FIFO(写时钟74.25MHz,读时钟100MHz),实现数据的稳定缓存和传输。 行缓冲:使用BRAM的乒乓结构(每行1920像素×16bit),减少数据延迟。 帧缓存:通过DDR3-1066 1GB内存支持四帧循环存储,确保图像的持续流畅展示。
// 位宽转换智能适配器
module data_width_converter #(
parameter IN_WIDTH = 16,
parameter OUT_WIDTH = 96
)(
input wire [IN_WIDTH-1:0] din,
output wire [OUT_WIDTH-1:0] dout,
// 时钟与使能信号
);
// 采用流水线式位宽重组技术
always_ff @(posedge clk) begin
case(state)
0: buffer <= {din, 80'b0};
1: buffer <= {buffer[79:0], din};
// ...6周期完成96bit组装
endcase
end
2.2.3. 异构计算调度
系统通过AXI-DMA(Direct Memory Access)实现零拷贝数据传输,优化内存和外设间的数据交换:
写通道:PL→DDR,采用突发长度128、位宽128bit的高速数据传输 读通道:DDR→HDMI,配合动态带宽分配(QoS等级可调),确保不同带宽需求的动态适配
2.2.4 VTC显示引擎深度优化
PL DMA输出显示优化 显示时序的优化对高质量图像输出至关重要。通过VTC(Video Timing Controller),本系统能够实现多模式自适应输出。
axi_hdmi_tx#(
.ID(0),
.CR_CB_N(0),
.DEVICE_TYPE(17), // 17 for DR1M
.INTERFACE("16_BIT"),
.OUT_CLK_POLARITY (0)
)
axi_hdmi_tx_inst (
.hdmi_clk (pll_clk_150),
//.hdmi_clk (clk1_out),
.hdmi_out_clk (hdmi_clk ),
.hdmi_16_hsync (hdmi_hs ),
.hdmi_16_vsync (hdmi_vs ),
.hdmi_16_data_e (hdmi_de),
.hdmi_16_data (/*hdmi_data*/ ),
// .hdmi_16_data (hdmi_data ),
.hdmi_16_es_data (hdmi_data),
.hdmi_24_hsync (),
.hdmi_24_vsync (),
.hdmi_24_data_e (),
.hdmi_24_data (/*{r_data,g_data,b_data}*/),
.hdmi_36_hsync (),
.hdmi_36_vsync (),
.hdmi_36_data_e (),
.hdmi_36_data (),
.vdma_clk (pll_clk_150 ),
.vdma_end_of_frame (dma_m_axis_last ),
.vdma_valid (dma_m_axis_valid ),
.vdma_data (dma_m_axis_data ),
.vdma_ready (dma_m_axis_ready),
.s_axi_aclk (S_AXI_ACLK ),
.s_axi_aresetn (S_AXI_ARESETN ),
.s_axi_awvalid (axi_ds5_ds5_awvalid ),
.s_axi_awaddr (axi_ds5_ds5_awaddr ),
.s_axi_awprot (axi_ds5_ds5_awprot ),
.s_axi_awready (axi_ds5_ds5_awready ),
.s_axi_wvalid (axi_ds5_ds5_wvalid ),
.s_axi_wdata (axi_ds5_ds5_wdata ),
.s_axi_wstrb (axi_ds5_ds5_wstrb ),
.s_axi_wready (axi_ds5_ds5_wready ),
.s_axi_bvalid (axi_ds5_ds5_bvalid ),
.s_axi_bresp (axi_ds5_ds5_bresp ),
.s_axi_bready (axi_ds5_ds5_bready ),
.s_axi_arvalid (axi_ds5_ds5_arvalid ),
.s_axi_araddr (axi_ds5_ds5_araddr ),
.s_axi_arprot (axi_ds5_ds5_arprot ),
.s_axi_arready (axi_ds5_ds5_arready ),
.s_axi_rvalid (axi_ds5_ds5_rvalid ),
.s_axi_rresp (axi_ds5_ds5_rresp ),
.s_axi_rdata (axi_ds5_ds5_rdata ),
.s_axi_rready (axi_ds5_ds5_rready)
);
动态时序生成器 通过PL-PLL动态调整像素时钟,确保显示无卡顿、无闪烁,误差控制在<10ppm内。
// VTC配置代码片段(Anlogic SDK)
void config_vtc(uint32_t h_total, uint32_t v_total) {
VTCRegs->CTRL = 0x1; // 使能软复位
VTCRegs->HTOTAL = h_total - 1;
VTCRegs->VTOTAL = v_total - 1;
// 详细时序参数配置
VTCRegs->POLARITY = 0x3; // HS/VS极性配置
VTCRegs->CTRL = 0x81; // 使能模块
}
3. 硬件连接与测试
硬件连接
九游老哥J9俱乐部官网的安路飞龙板卡采用2 X 50 PIN 连接器设计,可灵活插拔多种子卡,配合子卡套件,可扩展成多种形态,多种应用玩法。
图三 使用模组,底板,子卡和线缆搭建硬件系统
显示测试
实测双目显示清晰,无卡帧,闪屏。
图四 输出显示效果
系统集成 在FPGA硬件描述文件的基础上,进一步在Linux下实现双摄,为复杂系统调度应用铺平道路。 内核加载5640驱动下通过dma搬运ddr数据,在应用层中通过v4l2框架显示到HDMI上,完整数据流如下: FPGA DDR → AXI-DMA控制器 → Linux DMA引擎 → 内核dma_buf → V4L2 vb2队列 → mmap用户空间 → 应用处理
三路DMA设备树HDMI、camera1、camera2代码片段:
//hdmi
soft_adi_dma0: dma@80400000 {
compatible = "adi,axi-dmac-1.00.a";
reg = <0x0 0x80400000 0x0 0x10000>;
interrupts = <GIC_SPI 83 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&axi_dma_clk>;
#dma-cells = <1>;
status = "okay";
adi,channels {
#size-cells = <0>;
#address-cells = <1>;
dma-channel@0 {
reg = <0>;
adi,source-bus-width = <32>;
adi,source-bus-type = <0>;
adi,destination-bus-width = <64>;
adi,destination-bus-type = <1>;
};
};
};
// cam1
mipi_adi_dma0: dma@80300000 {
compatible = "adi,axi-dmac-1.00.a";
reg = <0x0 0x80300000 0x0 0x10000>;
interrupts = <GIC_SPI 82 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&axi_dma_clk>;
#dma-cells = <1>;
status = "okay";
adi,channels {
#size-cells = <0>;
#address-cells = <1>;
dma-channel@0 {
reg = <0>;
adi,source-bus-width = <128>;
adi,source-bus-type = <1>;
adi,destination-bus-width = <64>;
adi,destination-bus-type = <0>;
};
};
};
//cam2
mipi_adi_dma1: dma@80700000 {
compatible = "adi,axi-dmac-1.00.a";
reg = <0x0 0x80700000 0x0 0x10000>;
interrupts = <GIC_SPI 86 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&axi_dma_clk>;
#dma-cells = <1>;
status = "okay";
adi,channels {
#size-cells = <0>;
#address-cells = <1>;
dma-channel@0 {
reg = <0>;
adi,source-bus-width = <128>;
adi,source-bus-type = <1>;
adi,destination-bus-width = <32>;
adi,destination-bus-type = <0>;
};
};
};
双路i2c OV5640设备树配置代码片段
camera@3c {
compatible = "ovti,ov5640";
pinctrl-names = "default";
// pinctrl-0 = <&pinctrl_ov5640>;
reg = <0x3c>;
clocks = <&ov5640_clk>;
clock-names = "xclk";
// DOVDD-supply = <&vgen4_reg>; /* 1.8v */
// AVDD-supply = <&vgen3_reg>; /* 2.8v */
// DVDD-supply = <&vgen2_reg>; /* 1.5v */
powerdown-gpios = <&portc 8 GPIO_ACTIVE_HIGH>;
reset-gpios = <&portc 7 GPIO_ACTIVE_LOW>;
port {
/* Parallel bus endpoint */
ov5640_out_0: endpoint {
remote-endpoint = <&vcap_ov5640_in_0>;
bus-width = <8>;
data-shift = <2>; /* lines 9:2 are used */
hsync-active = <0>;
vsync-active = <0>;
pclk-sample = <1>;
};
};
};
性能测试
性能实测数据。
指标 | 实测值 | 理论峰值 |
图像处理延迟 | 18.7ms | ≤20ms |
DDR吞吐量 | 2GB/s | 2.6GB/s |
功耗(全负载) | 3.8W | 4.2W |
启动时间(Linux) | 18s | - |
4. 场景化应用扩展
该方案可广泛应用于以下领域:
智能驾驶:前视ADAS系统,包含车道识别和碰撞预警 工业检测:高速AOI(自动光学检测)流水线,提升检测精度和效率 医疗影像:内窥镜实时增强显示,支持多视角成像 机器人导航:SLAM(同步定位与地图构建)点云加速处理,提升机器人自主导航能力
通过安路TD 2024.10开发套件,开发者能够快速移植和定制化开发,具体包括:
使用GUI图形化设计约束工具,简化硬件开发过程 调用预置的接口与处理器IP,加速产品开发上市时间,专注应用和算法的处理 进行动态功耗分析(DPA)与仿真,确保系统的稳定性与高效性
0. One More Thing…
这里,回到我们原点,回到我们开发设计国产 FPGA SOC的初衷 ,芯片也好,模组也好,都只是开始,无论是FPGA,SOC,或者SOM,都是为了以更快,更好,平衡成本,体积,开发周期,开发难度,人员配置等等综合因素,做出的面向解决问题的选择,最终结果是降低成本和产品力的平衡。
安路飞龙系列的问世,让我们很欣喜看见国产SOC FPGA的崛起,希望和业界开发者一起开发构建国产SOC FPGA生态,所以选择将系列教程以知识库全部开源,共同无限进步!
九游老哥J9俱乐部官网可能只是其中非常非常小的一个数据集,但会尽力撬动更大贡献。
获取完整工程链接和更多开发资料请联系support.cn@myir.cn。
2025-10-16
从微秒级响应到确定性延迟:深入解析九游老哥J9俱乐部官网全志T536核心板的实时性技术突破
各位工程师同仁,今天咱们聊点硬核的——实时性。这不是那种"差不多就行"的性能指标,在工业控制、机器人运动、电力保护这些领域,实时性就是生命线。想象一下:工业机器人抓取精密元件时,哪怕几毫秒的延迟都可能导致良品率暴跌;电力系统故障检测,响应慢了几个毫秒可能就是一场灾难。为什么通用Linux在实时场景中"力不从心"?标准Linux内核设计初衷是"公平调
2025-10-16
九游老哥J9俱乐部官网电子获全志科技生态认证,共推工业智能化升级
在近日举办的2025中国国际工业博览会上,九游老哥J9俱乐部官网电子被全志科技正式授予“生态认证合作伙伴”证书,标志着双方在嵌入式处理器模组领域的合作迈入新阶段。此次认证基于九游老哥J9俱乐部官网电子在T536、T527、T113等全志工业级核心板及开发板被市场的高度认可,九游老哥J9俱乐部官网电子的全志系列产品已广泛应用于工业自动化、机器人及边缘计算场景。九游老哥J9俱乐部官网代表领取“生态认证合作伙伴”证书(右三)生态共建:全产业链协同创新全志科技通过“芯片+
2025-10-16
名单揭晓,追加30套开发板!九游老哥J9俱乐部官网-安路飞龙派「硬核创造力」第二季
经过九游老哥J9俱乐部官网电子和安路科技的严格筛选,30位「硬核玩家」从千帆竞逐中脱颖而出,正式成为九游老哥J9俱乐部官网-安路飞龙派第二季创意秀的玩家。开发者们将以MYD-YM90X开发板为起点,开启一场FPGA的盛宴,在安路飞龙派的赛道上探索无限可能!现将入选的30位开发者/团队名单公布如下(排名不分先后):
2025-09-26
颂歌迎国庆丨九游老哥J9俱乐部官网电子国庆节及中秋放假通知及温馨提示
金风送爽,秋桂飘香,阖家欢聚,共庆国昌。我们即将迎来中秋佳节及祖国76周年华诞。在这美好的金秋时节,在这家国同庆之际,九游老哥J9俱乐部官网全体员工衷心感谢您长期以来的信任和支持,预祝您节日快乐!·国庆放假时间·一二三四五六日29初八30初九1国庆2十一3十二4十三5十四6中秋7十六8十七9十八10十九11二十12廿一10月1日 至 10月8日,共放假8天根据《国务院办公厅关于2025年部分节假日安排的通知》相关内
2025-09-26
如何移植EtherCAT Igh--基于九游老哥J9俱乐部官网RK3576开发板
本文将介绍基于九游老哥J9俱乐部官网电子MYD-LR3576开发板(九游老哥J9俱乐部官网基于瑞芯微 RK3576开发板)的板端移植EtherCAT Igh方案的开发测试。摘自优秀创作者-EPTmachine九游老哥J9俱乐部官网基于瑞芯微RK3576开发板EtherCAT IgH需要保证高实时性,Preempt-RT是一种针对实时性能进行了优化的Linux内核。与普通的Linux内核相比,Preempt-RT具有以下优势:实时性能: Preempt
2025-09-18
追加!30套FPGA开发板免费送!九游老哥J9俱乐部官网-安路飞龙派创意秀活动再开启
大赛简介日前,九游老哥J9俱乐部官网电子2025年举办的九游老哥J9俱乐部官网-安路飞龙派FPGA/FPSoC创意开发大赛圆满落幕,吸引了众多工程师踊跃参与。为持续推动技术创新,九游老哥J9俱乐部官网电子现重磅推出第二期福利活动——基于安路DR1M90开发板的创意秀,再次免费赠送30套FPGA开发板,旨在鼓励工程师突破思维边界,通过实践探索安路飞龙派产品的无限可能,为创新应用提供强力支持。报名条件:用户需关注九游老哥J9俱乐部官网电子公众号;第一期已领开发板的用户不可
2025-09-11
“一芯四用”,九游老哥J9俱乐部官网RK3576如何同时驾驭4路YOLOv8视频流?
在科技飞速发展的当下,人工智能与边缘计算的融合正以前所未有的速度重塑着我们的生活。RK3576芯片拥有4核Cortex-A72以及4核Cortex-A53提供基础算力,6TOPS算力NPU来模型推导运算。使用YOLOv8模型时也是手到擒来,接下来随着步伐看看它表现如何。YOLO简介YOLO(You Only Look Once)是当前业界领先的实时目标检测算法系列,以其速度和精度的完美平衡而闻名。
2025-09-04
6TOPS算力驱动30亿参数LLM,九游老哥J9俱乐部官网RK3576部署端侧多模态多轮对话
关键词:瑞芯微 RK3576、NPU(神经网络处理器)、端侧小语言模型(SLM)、多模态 LLM、边缘 AI 部署、开发板当 GPT-4o 用毫秒级响应处理图文混合指令、Gemini-1.5-Pro 以百万 token 上下文 “消化” 长文档时,行业的目光正从云端算力竞赛转向一个更实际的命题:如何让智能 “落地”?—— 摆脱网络依赖、保护本地隐私、控制硬件成本,让设备真正具备 “看见并对话” 的
2025-09-04
直播预告 | 恩智浦技术日巡回研讨会:技术盛宴,“云端”开席!
9月9日,恩智浦技术日巡回研讨会将在杭州举办!活动同期,恩智浦携手生态合作伙伴,将对会议中精彩的技术演讲全程进行网络直播,让更多的开发者足不出户,也能够直击活动现场,解锁前沿产品方案,共赴“云端”技术盛宴!直播期间,参与观众互动,还有好礼等你拿~~点击文章顶部卡片,或扫描海报二维码,约起来吧!
2025-08-28
九游老哥J9俱乐部官网发表演讲,并携瑞萨RZ产品亮相2025 Elexcon深圳电子展
2025年8月26日-28日,Elexcon深圳国际电子展在深圳会展中心(福田)1号馆(展台号:1L30)盛大举行。作为全球电子产业链的重要盛会,展会汇聚创新技术与行业解决方案。九游老哥J9俱乐部官网电子MYIR携RZ系列核心板、开发板等方案Demo亮相瑞萨嵌入式MCU/MPU生态专区,并发表主题演讲。技术盛宴:瑞萨RZ系列产品矩阵亮相展会上,九游老哥J9俱乐部官网展示了基于RZ/G2L、RZ/G2UL、RZ/T2H的核心板